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A B S T R A C T

The present study investigates a computational model’s ability to capture monolingual children’s
language behaviour during comprehension in Korean, an understudied language in the field.
Specifically, we test whether and how two neural network architectures (LSTM, GPT-2) cope with
a suffixal passive construction involving verbal morphology and required interpretive procedures
(i.e., revising the mapping between thematic roles and case markers) driven by that morphology.
To this end, we fine-tune our models via patching (i.e., pre-trained model + caregiver input) and
hyperparameter adjustments, and measure their binary classification performance on the test
sentences used in a behavioural study manifesting scrambling and omission of sentential com-
ponents to varying degrees. We find that, while these models’ performance converges with the
children’s response patterns found in the behavioural study to some extent, the models do not
faithfully simulate the children’s comprehension behaviour pertaining to the suffixal passive,
yielding by-model, by-condition, and by-hyperparameter asymmetries. This points to the limits of
the neural networks’ capacity to address child language features. The implications of this study
invite subsequent inquiries on the extent to which computational models reveal developmental
trajectories of children’s linguistic knowledge that have been unveiled through corpus-based or
experimental research.

1. Introduction

One notable trend in language sciences is to apply computational methods and techniques to pursue linguistic inquiries. This line of
research has explored computational models’ capacity to simulate human language behaviour (Chang, 2009; Hawkins et al., 2020;
Jones and Bergen, 2024; Marvin and Linzen, 2019; Warstadt et al., 2019; Wilcox et al., 2018), together with performance-wise var-
iations across algorithms (Hu et al., 2020; Shin and Mun, 2023a), thereby gaining momentum in addressing how learning occurs in the
human mind without presuming innate knowledge about grammar (Contreras Kallens et al., 2023; Perfors et al., 2011; Shin, 2021;
Shin and Mun, 2023b; Warstadt and Bowman, 2020; but see Perkins et al., 2022). Despite its significance, the current research practice
in this field bears three grave limitations. First, the field is skewed heavily towards a limited range of languages (and especially En-
glish) and usage features (e.g., adult language). In particular, based on the predominance of English-oriented Large Language Models
(LLMs), the intensification of this research bias is being accelerated. This restricts the generalisability of findings from previous studies
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to lesser-studied languages and registers. Second, while the vast majority of work on this topic seeks to propose newmodels or improve
currently available models, researchers pay relatively little attention to whether and how the implications of computational simu-
lations are compatible with those of other types of measurement, such as behavioural experiments and corpus findings revealing
fundamental architectures of human language behaviour. We are aware of few studies informative in this regard (Ambridge et al.,
2020; Oh et al., 2022; Shin and Mun, 2023a, 2023b; Xu et al., 2023). This gap prevents explainable AI, that is, an evaluation of the
degree to which the performance of computational models addresses the emergence, growth, and change in linguistic knowledge in a
sensible, interpretable way. Third, researchers’ access to computing resources in academia is limited. Researchers in academia often
confront costly access to cutting-edge algorithms and pre-trained models, as well as weak computing power. These circumstances stifle
AI literacy, namely, researchers’ ability to understand how computational algorithms work and utilise them to pursue linguistic in-
quiries. Together, these limitations pose a serious threat to diversity, equity, and inclusion in research (Benders et al., 2021; Blasi et al.,
2022; Chang and Bergen, 2024).

The present study aims to alleviate these concerns by investigating how computational models capture children’s language
behaviour during comprehension, a process in which language users identify an intended meaning or function from a given linguistic
form (Goldberg, 2019). In this study, we attend to children as the target population. Despite being extensively investigated in the
language acquisition literature due to their notable systematicity and variability of linguistic development interfacing with
domain-general learning capacities, this population has remained understudied in computational approaches to language science.
With technological advancements, computational methods hold the potential to complement and advance traditional research par-
adigms by uncovering patterns and mechanisms of child language development, as a type of general knowledge formation process. We
specifically focus on neural networks as an artefact of biological neurons in the human brain. To this end, we employ a suffixal passive
construction in Korean, which is an understudied language for this topic and is computationally challenging due to its
language-specific properties. Cross-linguistically, a passive construction is one major clausal type that expresses a transitive event
(‘who does what to whom’) and poses a challenge to its acquisition for children due to various factors involving the passive voice, such
as its paucity of input, the structural complexity that it manifests, and its competition with active-voice knowledge, which is frequent in
use and deeply entrenched in the mind (Abbot-Smith et al., 2017; Borer and Wexler, 1987; Brooks and Tomasello, 1999; Huang et al.,
2013; Messenger and Fisher, 2018; Shin, 2022a; Shin and Deen, 2023; see also Deen, 2011).

1.1. Computational modelling of children’s linguistic knowledge

An emerging line of research applies computational methods to reveal developmental trajectories of linguistic knowledgemeasured
through children’s comprehension or production (Alishahi and Stevenson, 2008; Ambridge et al., 2020; Bannard et al., 2009; Martinez
et al., 2023; Sagae, 2021; Yedetore et al., 2023; You et al., 2021). Alishahi and Stevenson (2008) conducted Bayesian simulations on
acquiring English verb-argument constructions. They created artificial input as pairs of a sentential frame and the corresponding
semantic description of that frame based on caregiver input. These form–meaning pairs were used to train a Bayesian learner that
displayed probability distributions involving constructional clusters as learning proceeded. The results showed that, as the quantity of
input increased over time, the learner was able to assign higher probabilities to frequently occurring verbs within specific constructions
to which they were mapped and generalise this schematic knowledge to a newly attested lexicon. You et al. (2021) investigated
whether meaning can be acquired with reference to contextual information (generated by word co-occurrences) and without reference
to syntactic structures. They trained Word2Vec models with two different types of speech in English (child-directed speech vs.
adult-directed speech) and conducted a discrimination task with causality as a test case. The results showed that the models were able
to infer causal meaning from simple co-occurrences of neighbouring words in child-directed speech, indicating that word sequences
can allow semantic inference without resort to explicit structural information. Sagae (2021) examined the extent to which neural
network models track the change in English-speaking children’s language throughout learning, which is measured via language
assessment metrics. The study trained an LSTM model with longitudinal language data for 16 children (specifically using morpho-
syntactic tags in the data) and evaluated the model’s classification accuracy, measured by age in months. The results showed that the
model generally performed on par with the baseline metrics (mean length of utterance, developmental sentence score, index of
productive syntax), indicating that the model could capture linguistic structures relevant to the assessment of language development.

The case for non-English, underrepresented languages and language-usage contexts is extremely thin. For example, Ambridge et al.
(2020) tested how children acquire the ability of productive generalisation which also conforms to usage conventions of their native
language. They compared acceptability judgements of sentences describing causation events for five typologically distinctive lan-
guages (English; Japanese; Hindi; Hebrew; K’iche’) and conducted a series of simulations using a discriminative learning mechanism.
The model developed for each language was trained on general-purpose corpora in that language and was not provided with
acceptability-rating data. Results showed that the model, whose performance was measured by correlating these ratings with human
judgments, exhibited a good level of fit to children’s and adults’ judgement data, except for the case of K’iche’. The findings of Shin and
Mun (2023a) are particularly pertinent to the present study. They expanded upon Shin (2021), which measured comprehension
behaviour in Korean monolingual children, focusing on the Agent-First strategy. Adopting a series of picture-selection tasks involving
active transitive sentences with varying degrees of scrambling and omission of sentential components, the children were asked to
choose one of two pictures corresponding to an auditory stimulus describing the target picture. Shin and Mun (2023a) investigated the
ability of neural networks to simulate the children’s picture-selection performance observed in Shin (2021), by assessing the binary
classification (Agent-First; Theme-First) performance of four models (Word2Vec, LSTM, BERT, GPT-2) using the test stimuli from the
original study. The results revealed that, while there were some similarities between these models’ classification performance and the
children’s response patterns, the models’ performance did not fully align with the children’s utilisation of this strategy. This
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discrepancy highlights asymmetries both across models and across experimental conditions.

1.2. Acquisition of suffixal passive in Korean

Korean is an agglutinative, Subject–Object–Verb language with overt case-marking via dedicated particles and active use of verbal
morphology to indicate grammatical information. Two major clausal constructions deliver transitivity in Korean: active transitive and
passive. The canonical active transitive pattern in Korean, when fully marked as in (1a), occurs with a nominative-marked agent,
followed by an accusative-marked theme; a verb carries no dedicated active morphology. Korean allows scrambling of sentential
components as in (1b) if that reordering (agent–theme → theme–agent in this case) preserves the basic propositional meaning. In
addition, omission of sentential components is permitted as in (1c–d) if event participants are clearly identified with no ambiguity
arising within the context (Sohn, 1999).

(1) Example: Active transitive construction in Korean
a. Canonical

Mina-ka Pola-lul an-ass-ta.
Mina-NOM Pola-ACC hug-PST-SE1

‘Mina hugged Pola.’

b. Scrambled

Pola-lul Mina-ka an-ass-ta.
Pola-ACC Mina-NOM hug-PST-SE
‘Mina hugged Pola.’

c. Omission (case marker)

Mina-ka Pola-lul an-ass-ta.
Mina-NOM Pola-ACC hug-PST-SE
‘Mina hugged Pola.’

d. Omission (argument & case marker)

Mina-ka Pola-lul an-ass-ta.
Mina-NOM Pola-ACC hug-PST-SE
‘(Mina) hugged Pola.’

Pertaining to the passive construction, the passive voice is marked across languages (Haspelmath, 1990; Siewierska, 2013), and its
usage frequency in Korean is notably low (in comparison to the use of the active voice; Park, 2021; Shin and Mun, 2023b; Woo, 1997).
Of the three types of passive construction (Sohn, 1999), the suffixal passive (which is the most frequent type that children encounter;
Shin, 2022a) consists of two arguments, a nominative-marked theme and a dative-marked agent occupying the subject and oblique
positions, respectively; a verb carries dedicated passive morphology. While the canonical pattern follows the theme–agent ordering as
in (2a), it can be scrambled, yielding the agent–theme ordering as in (2b) with the propositional meaning intact.

(2) Example: Suffixal passive construction in Korean
a. Canonical

Pola-ka Mina-hanthey an-ki-ess-ta.
Pola-NOM Mina-DAT hug-PSV-PST-SE
‘Pola was hugged by Mina.’

b. Scrambled

Mina-hanthey Pola-ka an-ki-ess-ta.
Mina-DAT Pola-NOM hug-PSV-PST-SE
‘Pola was hugged by Mina.’

Passive morphology, which is one of the four allomorphic variants of suffixes -i-, -hi-, -li-, or -ki- (Sohn, 1999), serves as a key
disambiguation point to identify the structural properties of the suffixal passive sentence, forcing a comprehender to revise the initial
analysis prior to that morphology. In Korean, a nominative-marked [+human] argument is likely to be interpreted as an agent, and a
dative-marked [+human] argument is likely to be interpreted as a recipient; these interpretations are supported by strong mapping
between thematic roles and case markers attested in language use (Kim and Choi, 2004; Shin and Mun, 2023b; Sohn, 1999). Therefore,
a plausible way of analysing (2) prior to the verb is that Pola acts on/for Mina. However, this initial analysis is incongruent with the
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passive-voice information conveyed by verbal morphology. Thus, upon encountering the verb at the sentence-final position, a com-
prehender must revise the initial interpretation by recalibrating the arguments’ thematic roles as required by passive morphology,
mapping a theme role onto the nominative-marked entity and an agent role onto the dative-marked entity. This revision process driven
by passive morphology as a late-arriving cue is linguistically and cognitively demanding (Rapp and Kendeou, 2007; Trueswell et al.,
1999), thereby adding difficulty in children’s comprehension of this construction (Kim et al., 2017; Shin, 2022a; Shin and Deen, 2023).

Shin (2022a), the baseline of the present study, investigated Korean monolingual children’s comprehension behaviour involving
the suffixal passive construction through four picture-selection experiments combined with a novel methodology that systematically
omitted or obscured portions of test sentences using acoustic sounds (e.g., cough, chewing). In each experiment, a pair of two pictures
was presented involving the same action but reversed thematic roles (e.g., a dog kicking a cat; a cat kicking a dog), and a sentence
indicating one of the two pictures (e.g., kangaci-ka koyangi-hanthey cha-i-eyo. dog-NOM cat-DAT kick-PSV-SE ‘The dog is kicked by the
cat.’) was presented twice orally; participants (three-and-four-year-olds; five-and-six-year-olds; adults) were asked to choose a picture
that matched the sentence. The four experiments yielded three key findings concerning children’s comprehension of the suffixal
passive construction (Table 1). First, given the competition between passive-voice knowledge (induced by verbal morphology) and
active-voice knowledge (which is frequent in use and well-entrenched in children’s minds), utilising passive-voice knowledge during
comprehension was influenced by age (serving as a proxy for language-usage experience). Second, children aged five to six demon-
strated the ability to apply passive-voice knowledge, with the degree of its use inversely proportional to the computational complexity
of the sentence (e.g., number of arguments, type of case markers present/absent). Third, children aged three and four did not
consistently interpret passive sentences in an active-like manner. These findings indicate an emerging sensitivity to passive
morphology and a growing capacity to employ passive-voice knowledge tied to that morphology with age, in conjunction with the
interplay between voice-related knowledge involving a given stimulus. This suggests early emergence but late mastery of linguistic
knowledge, the maturation of which necessitates substantial language-usage experience.

1.3. The present study

In addition to the acquisitional challenges involving the passive voice as shown across languages, this construction poses an
additional challenge to Korean monolingual children because passive morphology in a verb invokes a mandatory revision of initial
interpretation on the associations between thematic roles and case markers from typical/frequent (nominative-marked agent; dative-
marked recipient) to atypical/infrequent (nominative-marked theme; dative-marked agent) ones. In this respect, great interest lies in
whether computational models can recognise passive morphology and properly conduct the required revision process to arrive at the
correct interpretation of a suffixal passive sentence. We investigate this issue by developing neural network models with (i) fine-tuning
via patching (i.e., pre-trained model + caregiver input) and (ii) hyperparameter variations and by examining their classification
performance on the same test stimuli as that used in Shin (2022a). Caregiver input is noteworthy because of its simple, brief, and
repetitive nature, which qualitatively differs from adult-directed speech and plays a substantial role in the way that children develop
linguistic knowledge (Behren, 2006; Cameron-Faulkner et al., 2003; Snow, 1972; Stoll et al., 2009). Therefore, it is reasonable to
assume that a computationally simulated learner trained on caregiver input would elucidate child language features (Alishahi and
Stevenson, 2008; You et al., 2021; but see Yedetore et al., 2023). Reflecting the core assumption of usage-based constructionist
approaches—what-you-see-is-what-you-get (Goldberg, 2019; Lieven, 2010; Tomasello, 2003), the models engage only in formal
features (i.e., raw text) in the course of training and classification, which differs from other studies implementing additional devices in
their simulations, such as thematic role variables (Chang, 2002) and a separate layer encoding semantic information (Alishahi and
Stevenson, 2008). This study also builds on Shin and Mun (2023a), complementing how hyperparameter variations modulate model
performance with respect to child language data. As we are not aware of any study touching upon this inquiry, our study is pioneering

Table 1
Summary of experimental results: Shin (2022a).

Experiment Condition Three-and-four-year-olds Five-and-six-year-olds Adult

Mean SD Mean SD Mean SD

1 NNOMNACCVact 0.844 0.36 0.942 0.24 1.000 0.00
NACCNNOMVact 0.778 0.42 0.710 0.46 1.000 0.00
NNOMNDATVpsv 0.456 0.50 0.478 0.50 1.000 0.00
NDATNNOMVpsv 0.511 0.50 0.768 0.43 1.000 0.00

2 NCASENCASEVact 0.667 0.48 0.773 0.42 0.900 0.30
NCASENCASEVpsv 0.545 0.50 0.424 0.50 0.150 0.36

3 NNOMVact 0.944 0.23 0.971 0.17 0.933 0.25
NACCVact 0.922 0.27 0.971 0.17 1.000 0.00
NNOMVpsv 0.522 0.50 0.710 0.46 0.967 0.18
NDATVpsv 0.533 0.50 0.841 0.37 0.950 0.22

4 NCASEVact 0.426 0.50 0.604 0.50 0.667 0.48
NCASEVpsv 0.593 0.50 0.333 0.48 0.100 0.30

Note. The scoring for the conditions in Experiments 2 and 4, which can in principle be interpreted in more than one way, was based on the high
likelihood of agent-first interpretation (0: theme-first; 1: agent-first). The mean scores in these conditions indicate the mean rates of agent-first
response.
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and innovative, and simultaneously, somewhat explorative.
In this study, we adopt two neural network architectures: LSTM (Long Short-Term Memory; Hochreiter and Schmidhuber, 1997)

and GPT-2 (Generative Pre-trained Transformer 2; Radford et al., 2019). LSTM is a recurrent neural network algorithm with the
addition of three gates (Forget, determining whether the incoming information from the previous timestamp is irrelevant and thus
forgotten; Input, quantifying the significance of new information carried by the incoming input; Output, submitting the currently
updated information to the next timestamp) comprising a memory cell in a hidden layer. In addition to the possibility that recurrent
neural networks learn some aspects of syntactic structures when provided with appropriate training (Futrell and Levy, 2019; Linzen
and Baroni, 2021), this algorithm has a better control for the extent to which information in a hidden state is updated after each word.
GPT utilises an attention mechanism for effective computation by enhancing each part of the input sequence in consideration of
various information about the whole sequence (e.g., segment position) to better identify the most relevant parts of that sequence
(Vaswani et al., 2017). Because this algorithm targets a general-purpose learner whose learning trajectories are not subject to
particular tasks, model training does not stand on the specifics of data or tasks (Radford et al., 2019); it can also perform new tasks with
a relatively small number of examples. Despite the continuous development of the GPT-n series, GPT-2 is often employed to conduct
simulations on language behaviour (Goldstein et al., 2022; Hosseini et al., 2022), yielding successful modelling on various language
tasks.

2. Methods

Fig. 1 presents the entire workflow of computational simulations in this study. All the modelling work was conducted using a
MacBook Pro (Apple M2 Max with 38‑core GPU, 16‑core Neural Engine, 96GB unified memory).

2.1. Data pre-processing

Table 2 summarises the information about the caregiver-input data in CHILDES (MacWhinney, 2000) used in our study. We utilised
the same data as that used by Shin andMun (2023a) for the current study in consideration of the comparability of findings between the
two studies. The data were pre-processed by (i) correcting typos and spacing errors and (ii) excluding any sentence whose length was
less than five characters or those consisting only of onomatopoeic and mimetic words (see Shin, 2022b for the details about the
pre-processing), which resulted in 69,498 sentences (285,350 eojeols3).

2.2. Model training4

2.2.1. Architecture-general procedure
Table 3 provides details on each model created in this study. Neural networks typically require extensive training data for training

to ensure their optimal operation (Edwards, 2015), but there is no pre-trained model exclusively constructed with caregiver input, nor
a sufficient amount of Korean caregiver-input data to create a pre-trained model. In addition, children encounter more than just
caregiver input in real-life scenarios; there are many types of exposure to language use with which children are surrounded. To cope
with these issues, we employed the respective pre-trained models, which were open-access and representative at the moment of study,
and patched the caregiver-input data to each pre-trained model when developing our models.5 The patching procedure, inspired by
prior work (Ilharco et al., 2022; Moon and Okazaki, 2020; Ninalga, 2023), involved enlarging a pre-trained model by incorporating
syllables from the caregiver input which were not present in the model to that model. This procedure increased the vocabulary size of
the GPT-2 pre-trained model (51,200 to 67,052). We believe that incorporating caregiver input into pre-trained models can enhance
ecological validity for this type of modelling, but no research has scrutinised this point thoroughly, indicating the need for further
attention.

To conduct the binary classification of test items (Agent-First; Theme-First), our models were further fine-tuned on instances of all
the constructional patterns expressing a transitive event—active transitive and suffixal passive, with scrambling and varying degrees of
omission manifested—with labels indicating whether the thematic-role ordering of these instances followed agent-first or theme-first
(see Appendix for the information about the instances). The instances were extracted from the caregiver-input data in CHILDES
through an automatic search process developed by Shin (2022b); every sentence for each extraction was checked manually to confirm
its accuracy. This treatment also aimed to enhance compatibility between the simulation environments and the experimental settings
of Shin (2022a), in which participants were shown transitive-event pictures before receiving a stimulus to contextualise their inter-
pretation. The procedure involved exposing the models to two labels indicating the thematic-role orderings of transitive-event sen-
tences, along with the sentences themselves, to prepare the models for the designated classification task. This approach is conceptually
analogous to the procedure employed with children in Shin (2022a). Furthermore, considering the zero occurrence of some patterns in
the input, we adapted the Laplace smoothing technique (Agresti and Coull, 1998) by adding one fake instance (following the

Fig. 1. Overview of computational modelling.
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pattern-wise characteristics) to all the patterns.
To investigate the influence of hyperparameter variations on model performance when handling child language data, we adjusted

three hyperparameters for each architecture: learning rate, batch size, and dropout rate for LSTM; learning rate, batch size, and
maximum sequence length for GPT-2. Our choices were informed by previous studies (architecture-general: Li et al., 2020; Sun et al.,
2019; Takase et al., 2018; Wu et al., 2019; LSTM: Kågebäck and Salomonsson, 2016; Ma et al., 2020; Qian et al., 2017; Yang et al.,
2019; GPT-2: Budzianowski and Vulić, 2019; Dai et al., 2023; de Vries and Nissim, 2021). These variations resulted in 18 sub-models
per architecture.

2.2.2. Architecture-specific procedure

2.2.2.1. LSTM. No syllable-based Korean pre-trained model for this architecture exists, so we extracted relevant vocabulary infor-
mation from a pre-trained model for ELECTRA and trained the model. For each epoch, all the syllable information was submitted to the

Table 2
Information about caregiver input data in CHILDES.

Name of corpus Caregiver Child /age range Time of collection (year) Quantity (sentence #)

Jiwon M & F Jiwon / 2;0–2;3 1992 10,602
Ryu GM, GF, & M Jong / 1;3–3;5 2009–2011 28,657

GM, M, & F Joo / 1;9–3;10 2010–2011 27,071
M Yun / 2;3–3;9 2009–2010 15,263

Note. F = father; GF: grandfather; GM = grandmother; M = mother.

Table 3
Specification of computational models.

LSTM GPT-2

Python Package PyTorch (Paszke et al., 2019; version 2.1.0) Transformers (Wolf et al., 2020; version 4.35)
Pre-trained model KoCharElectra-Base(a)

(Size: 11,360)
KoGPT2-base-v2(b)

(Size: 51,200)
Tokenisation Syllable-based Syllable-based; Byte Pair Encoding
Hyperparameter variation Learning rate: 0.001, 0.0001

Batch size: 16, 32, 64
Dropout rate: 0.3, 0.5, 0.7

Learning rate: 0.001, 0.0001
Batch size: 16, 32, 64
Max. sequence length: 64, 128, 256

Epoch 10 10
Model-specific Hidden layers: 256

Embedded dimension: 128
Hidden dimension: 8
Number of layers: 1

Seed: 42
Epsilon: 0.00000001
Embedding & hidden dimension: 768
FFN inner hidden dimension: 3072
Number of attention heads: 12
Number of parameters: 125 M
Number of transformer layers: 12

Note. (a) https://github.com/monologg/KoCharELECTRA (accessed on 2023-11-07). (b) https://github.com/SKT-AI/KoGPT2 (accessed on 2023-11-
07).

Fig. 2. Model training: LSTM (e.g., twayci-ka ‘pig-NOM’).
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model’s input layer. Take an eojeol twayci-ka ‘pig-NOM’ as an example (Fig. 2). For the syllable ci, the model first evaluates if the
information about the previous syllable tway obtained from the prior cell is relevant to the current input at the Forget gate (σ1). The
model then quantifies the information about the current input via the tangent function at the Input gate (σ2). Finally, the model hands
over this outcome to the processing of the next syllable ka at the Output gate (σ3), again via the tangent function. Once a sentence is
completed for processing, the optimiser computes the distance/loss between the observed value and the predicted value, the result of
which is transmitted through backpropagation.

After the training, the model evaluated the test stimuli, accumulating by-syllable information sequentially (by generating
respective hidden layers) and then comparing the outcomes (1= Agent-First; 0= Theme-First) to the actual labels of these stimuli. We
repeated the same learning process 30 times in each epoch and averaged the by-condition outcomes in assessing the models’ classi-
fication performance to alleviate potential variations during the task.

2.2.2.2. GPT-2. As illustrated in Fig. 3, each input sentence in the fine-tuning stage was transformed into two embedding types. For
token embedding, the sentences were tokenised as syllable units. Originally, GPT-2 utilised a character for this task in the case of
English. However, KoGPT-2 employs a syllable as a basic unit of tokenisation, likely in consideration of the language-specific prop-
erties of Korean. For position embedding, each token was converted into a numeric value indicating a unique index of the token with
reference to the vocabulary in the patched pre-trained model. The maximum dimension size of position embeddings was determined
by the maximum sequence length set in the hyperparameter-setting stage. The initial values of epsilon (i.e., the upper bound of
randomness for a model to explore the data) and seed (i.e., the initialisation state of a pseudo-random number generator indicating
where a model starts) were automatically updated with the outcomes of each epoch. The training occurred from the initial model with
the zero value of gradients to an optimal model with updated values through feedforward and backpropagation. Finally, the trained
model per epoch classified the test stimuli; likewise for the LSTMmodel, we averaged the by-condition classification outcomes from 30
times of learning.

2.3. Model evaluation

For test items, we employed the same stimuli used in Shin (2022a). Each condition consisted of six instances, with animals as agents
and themes and actional verbs at the end, as illustrated in Table 4. Each trained model classified every test stimulus, evaluating
whether the stimulus fell into Agent-First or Theme-First. While the stimuli in the case-less conditions (NCASENCASEVact, NCASENCA-

SEVpsv, NCASEVact, NCASEVpsv) in Shin (2022a) involved acoustic masking effects, the same stimuli in the simulations did not have such
auditory effects. This was unavoidable considering this study’s simulation setting, in which the models worked exclusively with the
textual data. We concede that this difference may serve as one confounding factor for interpreting the results. In this regard, using a
[MASK] token, although still textual, may pave the way for further research based on this study’s findings.

Our aim was to compare the picture-selection performance of children as observed in Shin (2022a) directly and meaningfully with
the classification performance of the models in our study. To achieve this, we utilised the models’ classification accuracy (or their
Agent-First classification rate for the case-less conditions) as analogous to the children’s response patterns in each condition. We note
that 50 %, or a value of 0.5, represents the chance level when interpreting the results.

Fig. 3. Model training: GPT-2 (e.g., napi-ka kkwulpel-ul an-ayo butterfly-NOM honeybee-ACC hug-SE ‘The butterfly hugs the honeybee.’).
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Table 4
Composition of test stimuli.

Condition Example Expected classification

NNOMNACCVact cat-NOM dog-ACC kick Agent-first
NACCNNOMVact dog-ACC cat-NOM kick Theme-first
NNOMNDATVpsv cat-NOM dog-DAT kick-PSV Theme-first
NDATNNOMVpsv dog-DAT cat-NOM kick-PSV Agent-first
NCASENCASEVact(a) cat dog kick Agent-first
NCASENCASEVpsv(a) cat dog kick-PSV Theme-first
NNOMVact cat-NOM kick Agent-first
NACCVact dog-ACC kick Theme-first
NNOMVpsv cat-NOM kick-PSV Theme-first
NDATVpsv dog-DAT kick-PSV Agent-first
NCASEVact(a) dog kick Agent-first
NCASEVpsv(a) dog kick-PSV Theme-first

Note. As (a) can in principle be interpreted in more than one way, the expected classification was determined on the
basis of the canonical thematic-role ordering in each construction type (active transitive: Agent-first [agent–theme];
suffixal passive: Theme-first [theme–agent]).

Fig. 4. Model performance: NNOMNACCVact. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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3. Results

3.1. Case-marked conditions

3.1.1. Two-argument active transitive: NNOMNACCVact & NACCNNOMVact
The children in Shin (2022a) were good at both conditions in general, and they were better in the canonical condition than the

scrambled condition (three-and-four-year-olds: 84 % in NNOMNACCVact & 78 % in NACCNNOMVact; five-and-six-year-olds: 94 % in
NNOMNACCVact & 71 % in NACCNNOMVact). These findings align with those of previous research showing children’s degraded accuracy
rates for the scrambled word order relative to the canonical word order (e.g., Jin et al., 2015; Kim et al., 2017; Schipke et al., 2012).

Figs. 4 and 5 present the classification accuracy of the models per epoch in each condition. In NNOMNACCVact, all the models
demonstrated high accuracy, independently of architecture or hyperparameter types, as the epoch progressed. In contrast, the two
architectures showed distinctive performance in NACCNNOMVact: while the LSTM models achieved very high accuracy, the GPT-2
models’ accuracy rates were close to 0, regardless of architecture or hyperparameter type. This outcome indicates that the GPT-2
models classified the test stimuli in this condition into Agent-First most of the time (which should have been Theme-First). These
findings resemble those of Shin and Mun (2023a), showing the two models’ contrastive performance in this condition.

3.1.2. Two-argument suffixal passive: NNOMNDATVpsv & NDATNNOMVpsv
The children in Shin (2022a) demonstrated notable by-age-group and by-condition asymmetries when coping with the two

passive-voice conditions. While the three-and-four-year-olds showed at-chance performance in both conditions (46 % in NNOMN-
DATVpsv; 48 % in NDATNNOMVpsv), the five-and-six-year-olds showed at-chance performance (51 % in NNOMNDATVpsv) in the canonical

Fig. 5. Model performance: NACCNNOMVact. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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condition and above-chance performance (77 % in NDATNNOMVpsv) performance in the scrambled condition. These findings indicate
that, given the acquisitional challenges involving the passive voice, the children may have noticed passive morphology and utilised
passive-voice knowledge tied to that morphology—albeit weak and inconsistent—to some extent, especially in the scrambled con-
dition for the five-and-six-year-olds, against the co-activation of and strong interference from active-voice knowledge.

Figs. 6 and 7 present the classification accuracy of the models per epoch in each condition. In NNOMNDATVpsv, the two architectures
showed distinctive performance: while all the LSTM models achieved very high accuracy, all the GPT-2 models’ accuracy rates were
close to 0, regardless of architecture or hyperparameter type. This finding indicates that the GPT-2 models predominantly classified the
test stimuli in this condition as Agent-First (which should have been Theme-First, the correct interpretation of this condition).
However, in NDATNNOMVpsv, all the models demonstrated high accuracy, independently of architecture or hyperparameter types, as the
epoch progressed.

3.1.3. One-argument active transitive: NNOMVact & NACCVact
The children in Shin (2022a) were very good at the two conditions (three-and-four-year-olds: 94 % in NNOMVact& 92% in NACCVact;

five-and-six-year-olds: 97 % in both conditions). This finding indicates that they had a good command of the case-marking knowledge
required for the active transitive, which is consistent with previous reports (Jin et al., 2015; Özge et al., 2019).

Figs. 8 and 9 present the classification accuracy of the models per epoch in each condition. In NNOMVact, all the models demon-
strated high accuracy, independently of architecture or hyperparameter types, as the epoch progressed. In NACCVact, except for the
LSTM models with a learning rate of 0.001, all the models demonstrated high accuracy, regardless of architecture or hyperparameter
types, as the epoch progressed. The extraordinary performance of the LSTM models with a learning rate of 0.001 is inconsistent with
Shin and Mun (2023a).

Fig. 6. Model performance: NNOMNDATVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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3.1.4. One-argument suffixal passive: NNOMVpsv & NDATVpsv
The children in Shin (2022a) demonstrated by-age-group differences in accuracy. While the three-and-four-year-olds showed

uniformly at-chance performance in the two conditions (52 % in NNOMVpsv; 53 % in NDATVpsv), the five-and-six-year-olds showed
uniformly above-chance performance in both conditions (71 % in NNOMVpsv; 84 % in NDATVpsv). This finding indicates that
passive-voice knowledge may have been increasingly used for sentence comprehension as age increased.

Figs. 10 and 11 present the classification accuracy of the models per epoch in each condition. In NNOMVpsv, the two architectures
demonstrated different patterns of accuracy. For LSTM, as the epoch progressed, the models with a learning rate of 0.001 showed at-
chance performance, and the models with a learning rate of 0.0001 improved the accuracy up to above-chance performance. For GPT-
2, all the models showed very low accuracy, regardless of hyperparameter type, indicating that they classified the test stimuli in this
condition into Agent-First most of the time (which should have been Theme-First, the correct interpretation of this condition). In
NDATVpsv, except the GPT-2 models with the learning rate of 0.0001, all the models demonstrated high accuracy, independently of
architecture or hyperparameter types, as the epoch progressed.

3.2. Case-less conditions

3.2.1. Two-argument conditions: NCASENCASEVact & NCASENCASEVpsv
The children in Shin (2022a) showed above-chance performance in NCASENCASEVact, with the five-and-six-year-olds (77 %) man-

ifesting more agent-first interpretation than the three-and-four-year-olds (67 %). In contrast, they showed numerically lower pref-
erence for the agent-first interpretation in NCASENCASEVpsv than its active counterpart (54 % for the three-and-four-year-olds; 42 % for
the five-and-six-year-olds), and the difference in the response rates between the two conditions was substantial only for the

Fig. 7. Model performance: NDATNNOMVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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five-and-six-year-olds. This finding indicates the role of passive morphology in the children’s interpretations, with age effects on
applying passive-voice knowledge to sentence comprehension. The adult controls’ agent-first response rate in NCASENCASEVpsv was only
15 per cent, indicating a strong theme-first interpretation in this condition.

Figs. 12 and 13 present the classification performance (coded as Agent-First= 1) of the models per epoch in each condition. Overall,
the two architectures demonstrated different patterns of classification as the epoch progressed. In NCASENCASEVact, whereas only some
of the LSTMmodels with a learning rate of 0.001 (batch= 64, dropout= 0.5 or 0.7) achieved above-chance rates of Agent-First, all the
LSTMmodels with a learning rate of 0.0001 showed a very high rate of Agent-First. In contrast, all the GPT-2 models were at-chance or
slightly above at-chance, regardless of hyperparameter types. The two architectures’ performance in this condition aligns partially
with Shin and Mun (2023a). A similar kind of by-architecture divergence occurred in NCASENCASEVpsv. For LSTM, all the models with a
learning rate of 0.001 showed below-chance performance, indicating that they classified the test stimuli in this condition into
Theme-First most of the time; all the models with a learning rate of 0.0001 showed above-chance performance, indicating that they
predominantly classified the test stimuli in this condition into Agent-First (which should have been Theme-First, the preferred
interpretation of this condition). All the GPT-2 models were at-chance or slightly above-chance, regardless of hyperparameter types.

3.2.2. One-argument conditions: NCASEVact & NCASEVpsv
The children in Shin (2022a) performed differently by age group and condition. In NCASEVact, while the five-and-six-year-olds (60

%) outperformed the three-and-four-year-olds (42 %), the numeric difference in the agent-first response rates was statistically
insignificant, indicating that the two groups did not differ considerably in this condition. In contrast, in NCASEVpsv, the rate of
agent-first response for the three-and-four-year-olds (59 %) increased when compared to this group’s performance in its active-voice

Fig. 8. Model performance: NNOMVact. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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counterpart, whereas the rate significantly decreased for the five-and-six-year-olds (33%) compared to this group’s performance in the
active-voice counterpart. These findings indicate that the five-and-six-year-olds reliably interpreted the case-less noun in NCASEVpsv as
the undergoer of an action, suppressing active-voice knowledge in competition, when the computational burden was relaxed. The
adult controls demonstrated a very low rate of agent-first response in this condition (10 %), indicating their strong theme-first
interpretation.

Figs. 14 and 15 present the classification performance (coded as Agent-First= 1) of the models per epoch in each condition. Overall,
the two architectures demonstrated similar divergence, as shown in the two-argument case-less conditions as the epoch progressed. In
NCASEVact, the LSTM models with a learning rate of 0.001 achieved below-chance performance, indicating that they classified the test
stimuli in this condition as Theme-First most of the time, which would have been expected to occur at chance level if the models
faithfully simulated the children’s response patterns. The models with a learning rate of 0.0001 achieved above-chance performance,
indicating that they classified the test stimuli in this condition as Agent-First most of the time, which again would have been expected
to occur at chance level if the models faithfully simulated the children’s response patterns. These results are inconsistent with Shin
(2022a) and Shin and Mun (2023a). In contrast, all the GPT-2 models were at-chance or slightly below-chance, independently of
hyperparameter types, which aligns with Shin and Mun (2023a) but not with Shin (2022a).

In NCASEVpsv, the LSTMmodels with a learning rate of 0.001 achieved below-chance performance, indicating that they classified the
test stimuli in this condition as Theme-First most of the time. The LSTMmodels with a learning rate of 0.0001 showed varying degrees
of performance depending on the batch size and the dropout rate. In contrast, whereas all the GPT-2 models with a learning rate of
0.001 showed at-chance performance, all the GPT-2 models with a learning rate of 0.0001 showed below-chance performance,
indicating that they classified the test stimuli in this condition as Theme-First most of the time.

Fig. 9. Model performance: NACCVact. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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4. Discussion and conclusion

4.1. Summary of study

Motivated by the proxy provided by neural networks as biologically inspired models of computation, we developed two neural
network models (LSTM; GPT-2) with hyperparameter variations and measured their classification performance on the test sentences
used in Shin (2022a) involving scrambling and omission of sentential components to varying degrees. Specifically, we tested if the
models could recognise verbal morphology in the suffixal passive construction and conduct the interpretive procedures driven by that
morphology (i.e., revision of initial interpretation on the mapping between thematic roles and case markers). We found that, although
the performance of these models partially aligned with the children’s response patterns observed in Shin (2022a), the models did not
faithfully replicate the children’s comprehension behaviour pertaining to the suffixal passive. This discrepancy resulted in asymme-
tries across models, conditions, and hyperparameters.

4.2. Disparity between model performance and child comprehension behaviour

4.2.1. Factors contributing to model performance
The results of this study are attributable to various factors. For instance, whereas Korean caregiver input joins the general char-

acteristics of child-directed speech (Shin, 2022b; cf. Cameron-Faulkner et al., 2003; Snow, 1972; Stoll et al., 2009), it also manifests
language-specific properties, such as scrambling and omission of sentential components (see Appendix for the

Fig. 10. Model performance: NNOMVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.
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constructional-pattern-wise variability in this respect). Along with the general features of caregiver input, the models may have been
sensitive to the specific word order and the type of case markers present in a stimulus during the classification task, particularly as
shown in the two-argument case-marked conditions manifesting non-canonical thematic-role ordering (NACCNNOMVact; NNOMN-
DATVpsv) and the case-less conditions (NCASENCASEVact; NCASENCASEVpsv; NCASEVact; NCASEVpsv). This finding aligns with previous reports
on language-specific challenges to the automatic processing of Korean (Kim et al., 2007; Shin, 2022b), also partially aligning with
Ambridge et al. (2020) showing the failure of modelling human judgements in K’iche’.

Regarding language-specific and construction-specific properties, the models’ ability to recognise passive morphology and perform
the necessary revision process related to the suffixal passive did not clearly emerge. In the two case-less passive-voice conditions
(NCASENCASEVpsv; NCASEVpsv)—the core conditions testing how the models cope with passive morphology and its related interpretive
procedures for classification, not all the sub-models succeeded in classifying the test stimuli as Theme-First as intended (NCASENCA-

SEVpsv: LSTM, learning rate = 0.001; GPT-2, learning rate = 0.0001, Batch = 16, MaxLength = 256; NCASEVpsv: LSTM, learning rate =
0.001; LSTM, learning rate= 0.0001, Batch= 64, Dropout= 0.7; GPT-2, learning rate= 0.0001). Moreover, the classification accuracy
of model outputs in the case-marked conditions (NNOMNDATVpsv; NDATNNOMVpsv; NNOMVpsv; NDATVpsv) did not seem to reasonably
approximate the children’s picture-selection patterns found in Shin (2022a), also manifesting notable by-architecture and
by-hyperparameter asymmetries. The precise locus of these asymmetries appears nebulas, as is often the case when interpreting the
performance of LLMs in downstream language tasks. However, the disparity between the models’ performance and the children’s
comprehension behaviour in the suffixal passive conditions suggest the following interpretation: neural networks struggle to adapt to
language-specific linguistic cues that are language specific, or at least, they process linguistic cues differently from the (developing)
human processor does so.

Fig. 11. Model performance: NDATVpsv. X-axis = epoch; Y-axis = accuracy (mean). Error bars = 95 % CIs.

G.-H. Shin and S. Mun Computer Speech & Language 90 (2025) 101701 

15 



Another factor possibly contributing to the models’ performance is the simulation environments in this study. We trained each
model with all the transitive-event instances in CHILDES, considering how the children in Shin (2022a) attuned their interpretation to
transitive events before being exposed to the stimuli. Despite this treatment, the models’ testing environment may not have fully
conformed to what the children partially experienced due to the pre-trained models, mostly comprising adult language features, when
constructing eachmodel. Moreover, the test items in the simulations involved no overt acoustic-masking effects (see Table 4) as used in
Shin (2022a) that informed the children of something that was somehow hidden (see Table 1). This absence of auditory signals related
to the marker(s), which was inevitable due to the simulation settings in which models exclusively processed the textual data, may have
unexpectedly affected model performance (cf. Stoyneshka et al., 2010). Taken together, while our simulations were conducted to align
with the experimental settings in Shin (2022a) as closely as possible, they stood on somewhat different grounds than the experiments,
as is common in modelling research. This difference could have contributed to the observed asymmetry between the models and
children, as the models may not have processed the stimuli in the same manner as the children did in the experiments. However, it is
important to note that we cannot conclusively attribute this disparity solely to these factors, as these issues remain largely unexplored
in the field.

In addition to these factors, architecture-internal characteristics of a computational model may be a core source of this disparity.
Neural networks often utilise contextual information through window-based computation (Haykin, 2009; Kriesel, 2007) when pro-
cessing data samples. A common practice involves extracting contextual information from formal sequences of words or characters; put
differently, neural network models rely heavily on form. While this approach establishes a computational context (cf. Firth, 1957), it
differs from the linguistic context encompassing semantic–pragmatic information. Therefore, when models access the meaning or
function of a linguistic unit, they resort to the formal co-occurrences in the input rather than drawing directly upon the unit’s meaning
or function. Moreover, neural networks are designed to generalise existing knowledge (from pre-trained models and fine-tuning) but

Fig. 12. Model performance: NCASENCASEVact. X-axis = epoch; Y-axis = agent-first rate (mean). Error bars = 95 % CIs.
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are not designed to make reasonable predictions or extrapolations beyond the training space (Marcus, 1998). Deep-learning models
attempt to resolve this issue by using massive amounts of data to cover every potential instance of formal co-occurrences; state--
of-the-art LLMs with billions of parameters, such as GPT-n, LLaMA, and Bard, benefit from deploying exceedingly—and unreal-
istically—large training sets. They often yield good performance when handling known inputs but remain unsatisfactory with novel
inputs (cf. Choi, 2023), particularly for accessing meaning or function through form (Ettinger et al., 2023; West et al., 2023). More
broadly, computational models encounter language usage indirectly and not in a grounded manner; that is, they do not directly engage
in language-usage profiles and situations to which language refers (Clark, 1996; McClelland et al., 2020).

Therefore, this nature may have caused the models’ performance to deviate from the children’s response patterns on some test
items which could be out of range. The stimuli in Shin (2022a), consisting of animal names as entities, would be new instances for our
models in this respect (and also considering the typical composition of transitive sentences in ordinary speech—animate agents and
inanimate themes; Dowty, 1991; Langacker, 1991). Some of these stimuli involved scrambling or omission of sentential components,
which are also non-typical. These factors may have led the models to malfunction in their operation. The key evidence supporting this
argument comes from the models’ performance on the conditions in which a simulated learner must determine the thematic role of the
first and sole case-less noun only with its presence (NCASEVact; NCASEVpsv) compared to their performance on one-argument case--
marked conditions in which a simulated learner has more, and core, information about the first noun’s thematic role indicated by a
specific case marker next to the noun (NNOMVact; NACCVact; NNOMVpsv; NDATVpsv).

Relatedly, the remarkable variations in the models’ performance resulting from hyperparameter manipulation further validate our
claim regarding the crucial role of architecture-internal characteristics of computational models for simulating human language
behaviour. Amongst the three hyperparameters chosen for each architecture, we found that the learning rate exerted the greatest
influence on adjusting the models’ classification behaviour. Given its significance in machine learning (i.e., a hyperparameter that

Fig. 13. Model performance: NCASENCASEVpsv. X-axis = epoch; Y-axis = agent-first rate (mean). Error bars = 95 % CIs.
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controls the rate at which an algorithm updates or learns parameter values), it likely serves as a proxy for the manner in which humans
generalise (linguistic) knowledge. Scholars have debated the process through which learners derive linguistic knowledge from con-
crete items and apply it to abstract representations—gradual abstraction (conservatism when transferring current knowledge to new
items; Ambridge and Lieven, 2015; Goldberg et al., 2004; Theakston et al., 2015) versus early abstraction (rapid generalisation of
current knowledge to other relevant items; Fisher, 1996; Gertner et al., 2006; Lidz et al., 2003). If our approach aligns with this
concept, the simulations in this study could provide new insights complementing and advancing the literature on how children
generalise linguistic knowledge as a function of exposure to linguistic environments and domain-general learning capacities.
Nevertheless, we concede that our assertion is based on exploratory observations and is, therefore, speculative. Further examination is
warranted.

4.2.2. Factors contributing to child comprehension behaviour
Despite the same pursuit of efficiency in information processing, how a computational model handles language input differs from

how the human processor copes with linguistic knowledge. Decades of research have shown that the processor operates to reduce the
burden of work currently being executed by immediately mapping form onto function (and vice versa) under simultaneous activation
of multiple (non-)linguistic routes, combined with cognitive-psychological factors (Christianson, 2016; Karimi and Ferreira, 2016;
Levy, 2008; McElree, 2000; O’Grady, 2015; Traxler, 2014). In particular, the child processor manifests notable characteristics in its
operation due to its developing nature (cf. Omaki and Lidz, 2015), favouring reliable or available cues with a one-to-one mapping
relation between form and function (Bates and MacWhinney, 1989; Cameron-Faulkner et al., 2003; Shin, 2021, 2022a; Shin and Mun,
2023b). Given the broad impact of general language-usage experience (Ambridge et al., 2015; Tomasello, 2003), the processor is

Fig. 14. Model performance: NCASEVact. X-axis = epoch; Y-axis = agent-first rate (mean). Error bars = 95 % CIs.
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sensitive to particular linguistic environments in which a target item at hand is situated (Dąbrowska, 2008; Dittmar et al., 2014;
Goldberg et al., 2004). The degree to which the current stimulus is informative against the prior language-usage experience also
modulates its performance (Dittmar et al., 2008; Shin and Deen, 2023; Stromswold et al., 1985). Furthermore, the contribution of
domain-general factors to the processor’s operation is sometimes limited or less efficient (Adams and Gathercole, 2000; Diamond,
1985). These aspects collectively modulate how the developing processor adjusts to accomplish sentence comprehension (Choi and
Trueswell, 2010; Garcia et al., 2021; Özge et al., 2019; Snedeker and Trueswell, 2004; Suzuki and Kobayashi, 2017).

Reflecting this aspect, the children in Shin (2022a) seemed to make optimal, albeit imperfect or partial, use of the information
available at the time, given their learning trajectories. When the children listened to an aural stimulus and were asked to choose one
picture that corresponded to the stimulus, they must compute the relative agenthood or themehood between the two arguments with
no animacy cue available. Specifically, in the case of the suffixal passive, they must discern verbal morphology indicating the voice and
recalibrate the initial, garden-pathed alignments between thematic roles and case markers to formulate a correct interpretation. For
this task, the child processor was likely to draw upon multiple morpho-syntactic and semantic cues, including distributional (e.g.,
mapping between an event representation and a syntactic representation manifested in word order) and local (e.g., mapping between
thematic roles and case markers) ones, which are searchable from their language-usage profiles and are sensitive to usage frequencies.
Moreover, their interpretation was likely to be influenced by multiple sources, including event or world knowledge (Friedman, 2000;
Snedeker and Trueswell, 2004), memory operation (Kim et al., 2017), task type (Huang et al., 2013), and cognitive bias (e.g.,
Agent-First strategy; Abbot-Smith et al., 2017; Shin, 2021). This interplay of various (non-)linguistic factors affecting the operation of
the child processor may not have been properly captured and modelled by the neural network learners developed in this study.

Fig. 15. Model performance: NCASEVpsv. X-axis = epoch; Y-axis = agent-first rate (mean). Error bars = 95 % CIs.
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4.3. Concluding remarks

The present study explored whether and how computational models represent children’s language comprehension, focusing on two
commonly used neural network architectures in language science, by examining their ability to cope with the Korean suffixal passive
construction. Cross-linguistically, acquiring the passive construction is often delayed. In the case of the Korean suffixal passive, given
that children have difficulty revising the initial parsing, the interpretive procedures required by passive morphology make acquiring
the passive more difficult. Our study revealed that, while computational architectures tested in this study may be able to utilise in-
formation about formal co-occurrences to access the intended message to a certain degree, (the outcome of) this process may sub-
stantially differ from how a child, as a developing processor, engages in comprehension. This explanation resonates with previous
studies showing a notable mismatch between computational models’ performance and human-generated data (Chang and Bergen,
2024; Dasgupta et al., 2022; McCoy et al., 2023). We believe that, through its deployment of neural network models with hyper-
parameter variations and language typologically different from the major languages currently under investigation, our study provides
evidence of the limits of the neural networks’ capacity to address child language features. The implications of this study invite sub-
sequent inquiries on the extent to which computational models reveal developmental trajectories of child language that have been
unveiled through corpus-based or experimental research. In line with this, comparing model performance across various neural
network architectures, manipulating the presence of the patching procedure (i.e., pre-trained-model-only classifiers vs. patched-model
classifiers) may provide additional insights into how computational models address child language features.

While this study does not stand on the core assumptions of nativism, such as the poverty of the stimulus and innate principles of
grammar, our simulations only partially engage with usage-based constructionist approaches that argue for the joint contributions of
usage frequency and domain-general learning capacities to shaping learning outcomes, as evidenced in the previous simulation-based
studies (Alishahi and Stevenson, 2008; Bannard et al., 2009; Perfors et al., 2011). The current study is limited in computational re-
sources and scope including constructional types, test stimuli, and age range. We thus believe that its implications offer a promising
avenue for future studies on this research paradigm in child language development at the intersection of computational methods and
techniques.

Notes

1. Abbreviations: ACC = accusative case marker; DAT = dative marker; NOM = nominative case marker; PSV = passive suffix; PST =

past tense marker; SE = sentence ender; Strikethrough in grey = obscured; V = verb.
2. Another type of challenge involving passive morphology is that it is morphologically irregular, is unproductive (as they apply only

to a limited set of verbs), and overlaps with causative morphology (Sohn, 1999; Yeon, 2015). They were not considered actively in
the current study. We hope future research fully reflecting these aspects would replicate the findings of this study.

3. An eojeol refers to a unit with whitespace on both sides that serves as the minimal unit of sentential components. This roughly
corresponds to a word in English.

4. See this repository for the code and dataset.
5. One possibility raised was that the caregiver input data may have overridden the adult-language / L1 information during the pre-

training stage, akin to catastrophic forgetting observed after fine-tuning a general-purpose model with specific datasets (Kirkpa-
trick et al., 2017). We acknowledge that our study does not speak to whether this phenomenon occurred in our modelling process,
and further research is needed to explore this.
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